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The construction of a time-optimal control of distributed systems with random 

properties is considered for two problems. 
In Problem 1 the distributed system is described by a collection of n integral 

relations in the presence of a constraint imposed on the norm of the control 
,u (z, ‘t) in the space L, [v, x(0 f z < !?')I. In Problem 2 we study the construc- 
tion of a time-optimal control of the angular motions and torsional oscillations 

of an idealized model of an elastic aircraft of the I’ flying wing” type p, 21. In 

the flight of this model in a homogeneous turbulent atmosphere an inequality 
constraint is imposed on the energy needed for the creation of the control u (5, t). 

1. Formulation of Problem 1. Let the control object be described by the 
following integral relations : 

&(XJ)“S ~u(z,r)Gi(s,Z.+, t)dzdz (I=i,2 #..., n) (1.1) 

yz s 

Here 2 = (zr, q, . . . . 5,) and z = (z,, zs, . . . . z,) are two different points of a 
region v in which the process being considered takes place. The region v is denoted a< 
V z when we integrate with respect to z . Symbols_& z denote distinct instants of time, 

Qi (5, t) (i = 1, 2, aas, n) are functions characterizing the state of the control 
object, ~(2, z) is a deterministic control function, Gi (z, z, x, t) (i = 1, 2,..., n) 
are given real random functions. Below we assume that the functions Gi (z, Z, x, t) 
g= 1, 2, .-*, ?z) can be represented in the form of the following canonic expansions 

: 

Gi (2, IT, XT t) = Gio (2, Z( X, t) + 5 h,Gi, (2, ‘* XV ‘) (i = 1, 2,. . ., n) $2) 

r=1 

Here the expressions Gi, (z, z, x, t) c (Gi (z, z, 5, t)) (i = 1, 2, . . . . n) 
describe the means of the random functions Gi (z, Z, x, t), and Gi, (2, z, 5, t) 
(i = 1, 2, . . . . ?Z; F = 1, 2, . . . . p) are coordinate functions ; h, (F = 1, 2, . . . , p> 

are uncorrelated random variables with zero means and known variances. We assume 
that 

G&r, z,x,t)~L~[v~x(O~~~~)x~,~(~~‘t~T)~ 

(i = 1, 2, . . ., n; r = 1, 2,. . ., P) 

Using expressions (1.2) we can find that the means (qi (5, t)) (i’= 1, 2, . . . . n) 
and the cross-correlation moments Ri k (5, t) (i, k = 1, 2, . .., n) of the state func- 
tions Qi (5, t) (i = 1, 2, ...I n) for some fixed instant t have the following form: 

(qi (5, t)) = 1 S u (2, r) Gis (2, r, X( t) dx dr (I = 1, 3, . . .) n) (1.3) 

“2 o 
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x dz dz dy dq} (i, k=l, 2,.. ., n) (1.4) 

Here 0, = (bra) (r = 1, 2, . . . . p) are the variances of the uncorrelated random 
variables h, (r = 1, 2, . . . . p). We introduce the following functions : 

Qi (5, t) = “li (Cli (xv t)> + pi ((Ii (5, if)>” + i &k&k (x9 t) 3 

k=l 

E qi ,S [ U (21 r) Gio (2, TV x, t) dz dr f (i=1,2,...,n) (l-5) 
* 

Hi (2, Z, y, (py 2~ t) = Hi (YY Cpv 21 z, 5, t) = piGio(zv f, X, t) Gio (yt VP, XI t) $ 

+ i i WikGir ( zl z, xr t> G,, (y, cp, x, t) (i=l,2 ,..., n) (1.6) 
P=I k=l 

Here pi, hik = hai, pi (i, k = 1, 2, . . . . n) are given weight constants. The func- 

tions Qi (x, t) (i = 1, 2, . . . , n) can be looked upon as generalized state functions 
of (1.1). They yield a certain average probability characteristic of the process at the 

instant t. 
Suppose that the condition 

Qi(X, T) =Ti(X, T) (i = 1, 2, . . ., n) (1.7) 

ri(x, T) = TJ+_ 1 ~u(z, r)Gio(zy r, 5, t)dzdz + (i = 1, 2,. . ., n) 
vz O 

+ Jj JizL(z, z>u(y, q)H,(z, T, y9 cp, 51 T)dZdfdY dv (1.8) 
“* 0 vtl 0 

is fulfilled by assumption at some fixed instant t = T. Here yi (x, T) (i = 1, 2, 
..*, n) are given functions satisfying the conditions 

II. 

ri (5, T) EL, [VI, sr, ~-is (5, 2’) dx > 0 (i = 1, 2,. . ., n) (1.9) 
Yx i=l 

We pose the foli-owing problem: find a deterministic control 

(1.10) 

which takes system (1.1) from the state 
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qi (x, 0) c 0 (i = 1, 2, . . 4) (1.11) 

to the state Qi (5, 2’) = yi (z, T)of(1.8) (i = 1, 2, . . . . n)in the least time T p- 
sible. We assume that: (a) at least one solution.of system (1.8) exists, (b) the norm 

11 IL 11 of the optimal control depends continuously on T. 
Note 1. If A, = 0 (r = 1, 2, . ..( p), then the process being investigated is 

not stochastic but deterministic. In this case the original problem is a problem of reach- 

ing terminal states in least time ‘T under a norm-bounded control. Similar problems for 
a finite or a countable set of monient equalities of type (1.8), when the moments 
yi (i = 1, 2, . . . . n, . ..) do not depend on the space coordinates, have been investi- 

gated, for example, in [4, 51. To solve the original problem we require the results for 
an auxiliary problem investigated below. 

2. Formulrtion rnd rolutlon of the ruxilirry problem. We pose 
the following problem: for a fixed instant t = T find an optimal control u (z, t) E 
E L, which takes system (1.1) from state (1.11) to the state Qi (5, T) = J’i (5, T) 
of (1.8) (i = 1, 2, . . . . n) with the smallest value of the control norm-1 u 1. 

To solve this problem we apply the Lagrange multiplier method. We set up the aux- 
iliary functional 

E=- J{f: yi(z)[rli Jf u (z, r) Gi, (z, z, 5, T) dz dz + 

yx i=l "z O 

+Si S~U(z.Z)L1~~,Ip)Ai(Z,r,ylTp, ~9T)d2dtdyd~- ri(s9T)])ax+ 
vz 0 Y1/ 0 

+ J f&z, z) dzdz (2.4) 
“2 0 

Here Yi (x) E L, [Y] (i = i, 2, . . . . n) are the Lagrange multipliers. The incre- 
ment of functional E can be described by the formula 

AE = % (u, Au) - B (u) = n: (u, Au) + r (Au) (2.2) 

Here 

X (~iGio(ZyT~X, T)+ 2 Sju(y,~)Hl(~,~,Y,~.X.T)dyd~)dX]}dzd~ (2.3) 
yu O 

r (Au) = J iAu2(z, z)dzdz - 

n 

m yi (x) X 
“z 0 vx ix1 

x j-1 sjAu(z, z)Au(yv @H,(z, z, y, ‘P, 2. T) dzdW+x (2.4) 
-2 0 “!I 0 

We can show that the following estimate holds: 
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Ir(Au)lS{l+~~~~~(~~~(x,~~(~~r’~.rp~~~T)dXI~X 
Yz 0 vu “0 i==l 

x dz d-c dy dq]“‘)jl Au II2 (2.5) 

It is obvious that n (U, AU) is a functional, additive relative to Au, for which an esti- 

mate such as 

turns out to be true. From this we can conclude that fl (u, AU) is a linear continuous 

functional. Taking formula (2.5) into account we can assert that n (U, AU) is a first 
variation of functional (2. i) [6, 71. By equating the first variation of functional (2.1) to 
Zero, for determining the optimal control for the auxiliary problem we obtain the inte- 

gral equation 

u (2, r) - J i u (_I/, up) J i Yi (2) Hi (2, ~7 ~7 CP~ 19 ‘) dXdYdq - 

yIl O 
Y= i=l 

1 n -- cx qiYi (x) Gio (z, 7, xv T) dx = 0 
2 ’ ix1 

yx 

(2.7) 

If we multiply this equation by u (z, T) and integrate over the region v, and with 
respect to the parameter z in the limits from 0 to p, we find the formula 

II u Ia = S iI Yi (X) ‘l’i (Xv T) dx - + S [ :I Yi (5) X 
“x vx 

x I‘ ru (z, z) qiGi,,(z, z, x, T)dzdtj dx (2.8) 
Y b: 
.? 

for computing the smallest value of the control norm. 
System (1.8) and Eq. (2.7) form a closed system of (n -k 1) equations for determin- 

ing the (n -7 I) unknown functions u (z, T), Yi (x) (i = 1, 2, . . . . n) .If we 

substitute expression (1.6) into formula (2.7). then after using the notation 
T 

BiJ. (L) z .!' 1 II/ t,!/, (p) G,, (!I, '/J, J? T) &-/ d(P (i .= 1, 2,. . ., n; r =0, 1,. . .,p) (2-y) 

‘?I 0 

it is not difficult to find that 
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If Eq. (2.10) is substituted into (2.9). we obtain the following system of integral equa- 
tions : 

(2.11) 

Here 
(8 5 I, 2, . . ., n; i = 0, i,2, . . ., p) 

T 

%Jir (5, X) = ss 
G8J (~7 7, 51 T) Gi, (2, ~9 ~9 T) dz dr 

Yt O 

(2.12) 

(i, 8 = 1, 2,. . ., n; j, r = 0, 1, 2,. . -t P) 

With due regard to notation (2.9), equality (1.8) can be rewritten thus: 

Ti (x9 T) = rligio (X) + p&40’ (5) + i i [@dir (x:) gk, (s)l 
(2.13) 

(i = 19 22 - * -9 n) 
r=l k=l 

From the system of n (p f 2) Eqs. (2. ll), (2.13) we must find the n (p f 2) unknown 

functions gSf (z), W, (z) (i, s = 1, 2, . . . , n; j = 0, i, 2, .., P). The solution of 
the system of Eqs. (2.11). (2.13) is not unique as a consequence of the nonlinearity of 
system (2.13). From all these solutions it is necessary to choose that which furnishes the 

minimum of the control norm (2.8). Using relation (2.9) we can rewrite relation (2.8) 
thus : 

(2.14) 

We summarize the results stated above in the following way. 

Theorem 1. The solution algorithm for the auxiliary problem consists of the fol- 
lowing procedure : (a) from the system of n (p q 2) of Eqs. (2.11). (2.13) we find the 
n 0, + 2) unknown functions g,J (z), \vi (2) (s, i = 1) 2, . . . , n; j = 0, 1, 2, . . . , 
. . . . p), (b) if the solution of this system is unique, then the optimal control u [z, T) 
and its norm 11 u ([ are found by formulas (2.10) and (2.14). respectively, (c) if the 
solution of system (2. ll), (2.13) is not unique, then from all these solutions we select 
that one which yields the minimum of norm (2.14). 

Note 2. From formula (2.14) it follows that for the norm of the optimal control 

to be continuous in the parameter’T, it is sufficient that the given functions YS (X, T) 
(i = 1, 2, . ..) n) and the solution of the system of Eqs. (2.11), (2.13) be continuous 

in T. 

3. Solution algorithm for Problem 1. We state the following theorem. 
Theorem 2. Let U’ (2, T) be the optimal control for the auxiliary problem. If 

for this problem the norm fl u 11 depends continuously o&T, then the smallest positive 

root T’ of the equation 
11 U’ 11’ s 1 is Yi (1~) [Ti (XV T) - S g,o (X)] dX = a2 (3.1) 

yields the time-optimal time for Problem 1. 
Proof of Theorem 2. If u (2, Tj fz L, Iv, x (0 & t < T)l is any control 

satisfying system (1. S), then 
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II 1.4’ II = min II u II S II u II 
Note that 

11 u’ /I-+ 00 as T-t 0 

Indeed, this fact follows from the inequalities 

0 < J i Ti2 (t, T) da: G 
Y_& i=r 

(3.2) 

(3.3) 

which ensue from (1. 8). 
let us assume that T, is the time-optimal time for Problem 1. Further, let the norm 

It“!lT,(a (3.5) 

i.e. equality (3.1) is not fulfilled. Since the norm 1 ti 11 depends continuously on T and 
satisfies condition (3.3), there exists a time T, < Ti such that the inequalities 

11 2~’ fl IT, < 1 u' II/T, < a (3.6) 
are fulfilled. Consequently, time T, is not the least control time. since the norm of 

optimal control (2.7) 11 U' II G II u II , wereu(z,z)EL,[v,X (O,(TST)l h 
is some solution of system (1. S), and since by virtue of condition (3.3) the norm 11 u I> 

> a. for T < T', the smallest root r”of Eq. (3.1) is the time-optimal time for Prob- 

lem 1. Thus, Theorem 2 is completely proved. 

Note 3. If as a function of T the norm! u’ II has discontlnuities of the first kind , 
then equality (3.1) may not necessarily be fulfilled in the time-optimal case. In truth, 

this does not mean that the approach described above is inapplicable in this case also 
for solving the time-optimal problem. We remark that here it suffices to find the least 
value of T for which min 11 u j < a. 

Note 4. If the auxiliary problem has a solution u (z, t) E L, [vz X (0 < z < 
< T)] for any value of parameter T EZ (0, oc) and if 

11 U’ 11 --t 0 as T -+ oo (3.7) 

then the solution of Problem 1 exists for any value of the constant a E (0, m>, i. e. 
we can always find a T for which the condition 11 u 1) & a is fulfilled. Note that 

according to relation (2.8). for the fulfillment of condition (2.7) it is necessary that 

4. Formulation of Problem 2. In aeroelastic problem it is usually assumed 
that wing design is ideally elastic [l. 21. Under the assumption rotary motions and tor- 
sional oscillations of a “flying wing” can be described by the partial differential equation m 

a (4 Qtt - 2 (6 (5) Q,) = p (xr t) + J’, (4 F2 P) r~ (~9 0 (4.1) 
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-Here 0 = Q (5, t) is the angle between the chords of section z (at an instant t) in 
unperturbed and perturbed flights, a (z) is the lineal mass moment of inertia, 6 (z) is 
the rigidity of the wing section to torsion, p (5, t) is the supplemental lineal torque 
which arises in perturbed flight, u (t, t) is the.deterministic control. The product 
F, (~)$‘a (t)u (5, t) has the sense of a distributed torque, where the function Fl (cc) 
characterizes the distribution of the control along the wing length, while the influence 
on the control of various random factors (for example, atmospheric turbulence) is taken 
into account by means of the function F2 (t) . 

For Eq. (4.1) the initial and boundary 

Q (r, 0) = /I (dv 

Qr(z, t)l,=o = 0, 

Here I is the wing span, ft (z), fs (CC) 

conditions are 

Qt (2, t) It=o = fz (2) (4.2) 

Q, (5, t) Isa = 0 (4.3) 

are functions depending on a random parameter 
and taking their own distributions with a specified probability from a certain set of func- 
tion-realizations, the realizations fr (a$ are continuous piecewise-differentiable func- 

tions.the realizations fs (z) are piece- 
21 wise-continuous functions. 

We assume that : (a) the “flying 
wing” has a rectangular form in 

plan, (b) during the unperturbed 

motion the wing is in level flight 
in a calm atmosphere, (c) the mo- 
tion of the wing is considered to 
start at the instant t = 0 and, at 

this instant the atmosphere becomes 
turbulent, (d) the flight altitude 

and velocity remain unchanged, 

Fig. 1 

(e) the functions a (z), 6 (z) are 
taken to be independent of the 

space variable x. 
With the observance of assump- 

tion (b) the motion of each wing section is in steady-state and takes place at an un- 

changed angle of attack o (x) which is measured from the direction of zero lift. This 
angle of attack is the sum of the local angle of attack o. (x) measured from the direc- 
tion of zero lift without taking into account the elastic twisting angle q. (z) in the 

steady state level flight and of the angle Qo (z) itself, i. e. o (x) = o0 (x) j- q. (zj. 
Here the lineal torque does not depend on time t and, under certain commonly-accepted 
assumptions, can be described in the following manner [ 1, 21: 

p’ (x) = ecdSo (x) + M - W? x (4.4) 

aE 
ill = t?SE,, d = + I o=ll ’ 

S=$, F=ESE, 

Here e is the wing chord, c is the distance between the elastic axis (the line OL) 
and the line KP which passes through the aerodynamic center of the wing profile at 
the given section, E, is moment coefficient relative to line KP, ,!Zv is the lift coef- 
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ficient of the wing section, p ,is the density of the free-stream flow, JJ is the flight 
velocity, 3~ is the distance between points of the lines Oh and MR at the given wing 
section, &ffi is the mass center line of the wing section (see Fig. 1). 

For determining the aerodynamic forces and moments in the nonsteady-state motion 

we make use of the lifting-strip theory [ 1, 21, The equality 

I” (z) + p (z* Q = ecas [w (2) + Q (xc, t) + 0, (z, 01 + M - 

- mgx - r MG)Q (5, t) (4.5) 

holds in this case. Here r’ (z) is the elastic wing stiffness, 0, is the angle of attack 
caused by a change in the velocity vector by the atmospheric turbulence. It is commonly 

accepted that the perturbed velocity r’p sz V. It is obvious that 

From formulas (4.4), (4.5) it follows that 

It is known [8] that the mean (9 v> = 0 for homogeneous and isotropic turbulence. 

Taking relation (4.7) into account, Eq. (4.1) can be rewritten as follows: 

Here 

A= -+‘(x)-dceh’], b”=+const, B= + (4.9) 

The initial and boundary conditions for Eq. (4.8) remain as before (see formulas (4.2) 
and (4.3), respectively). We take it that the means have been given for the random 

variables rlV, Fs (& fl (& fs @$. 
During the flight the three situations listed below are possible, depending on the velo- 

city: (a) if A > 0, stability holds for the wing with respect to torsional strain and angu- 

lar motion, (b) if A < 0, the wing becomes unstable with respect to torsional strain 
and angular motion, (c) if A = 0,. the wing is found to be in a state which is often 

called critical. Let us assume that r (x) and-d do not depend on r. Below we shall 
consider only the case when A 2 0. 

For each realization of the random functions the solution of the boundary value Prob- 
lem 2, described by the collection of formulas (4.8), (4.2), (4.3), can be characterized 
by the following formulas [9] : oD 

Qh t)=@(s, t) +~~Ju~Gos(A~~) +t+sin(&t) +~~~V~~~) x 

xsin [A, (t - $1 fm;+ -$ F1 (f) F, (7) u (6, T)] $5 dr} ; (4 (4.10) 
Here, if A > 6, then 

x dS df + a0 cos (tat) + b. sin (I/;lt)} V, (z) 

Ok+-, hk2= (A + b2q2) (k = 0, 1, 2,. . .) 

(4.11) 

(4.12) 
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V,(5)=-&; Vk (3) = J&OS (OkZ) (k = 1. 2,. . .) 

1 1 

a0 = fl(4 T/‘o (4 dxa 
s 

bo = +&(Z)VO(xw 

0 0 

1 1 

ak = 
s 
fl(x)Vk(x)dx, bk = f k if2 (x)Vk (x)dx (k=1,2,...) 

0 0 

However, if A = 0, expressions (4.11). (4.14) transform to 

(4.13) 

(4.14) 

(4.15) 

The deterministic control u (X, 1) will be called admissible if the conditions 

U (XI q E Ls, ,~,,~(~~aU.(x,f)dzdi~~~ 

where a is a given positive number, are fulfilled. 
~ 

(4.~6) 

(4.17) 

(4.18) 

We pose the following problem: find an admissible control ,U (x, t) which in least 

possible time ?’ would take system (4.Q (4.3) from the initial state (4.2) into the sta_;e 
described by the formulas 

cQ(x, t)> jf=T = 0, <Qt(X, t)> It=T = 0 (4.19) 

6. Solutfon rlgorithm for Problem !4. If we compute the means 
(0 (G Q>, (91 (G O>, then, using conditions (4.19) and (Q) = 0, after a number 
of transformations, we can obtain the following relations 

ri(x,T)=STu(5,r)Gi(5,~,x,t)dtd~ 
00 

Here, 

(i = 1,2) 

r$(5V ‘) = 5 [rikVk(x)] (i=1,2) 

Rio = - (hI + PI), “TIk = - a&’ cos (hkT) - bk’sin (hkT) 

(k = 1,2, . . .) 

720 = - (h2 + pa)t 72, = kk bk’ sin $kT) - bk’ cos (AkT)] 

1 
(k = $2,. . .) 

ak’ = 
s vk(x)<fi(x)>dx, bk'= L 

0 
Rk j8,(x)(1,(x))dx 

(k=O,i,2,...) O 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 



366 N. N. Golub’ 

bo* = s vo (5) (fz (4) da: 
0 

(5.6) 

G (5, r, 5, T) = t i [&sin [hk (T - %)I F, (5) x 
k=l k 

X (f’s(~); I/‘,(x) VI, (t,} + @I (5, z, x, T) (5.7) 

f&(5, 7, ..c, T) = + i {cos [hk (T - r)l F~ (5) (F, (r)> vk (5) vk (5)) + 
k=l 

moreover, if A > 0, then + @2(5, z, Xl T) (5.8) 

@I (59 r, 5, T) = h F, (5) (J’s W> v. (5) v. (5) sin [ )/Z(T - r)] 

@)a (5, ~7 5, T) = + F, (5) (F, (r)) V, (5) V,(x) cos JLT(T - z)] 

h, = a,’ co9 ( I/XT) ( pl=b sm(f!Ar) 
- 

0’ 
. 

(5.9) 

h2 = - a,’ JLfsin (QT), 

if, however, A = 0, then 

pz = b,’ f&OS (I/ZT) (5.10) 

@I (5, 7, x1 q = + FI (5) (P, W 0” - t) T/o (5) ‘vo (~1 

Q)a(C,~,X,T>= $ F, (5) (Fs W> ‘vo (5) vo (4 (5.11) 

h, = a,‘, p1 = b,,*T, hz = 0, Pa = 0 

Thus, the solution of Problem 2 reduces to the investigation of system (5.1) which was 
studied in Sects. l-3 of this paper. In accordance with these results the optimal control 
has the form 

U(5, z) =‘s i ‘&(x)G,(5, z, x, T)ds (5.12) 
0 i-1 

Using the expansion 

yi (2) = i Iyikvk tx)l (I =i,2) (5.13) 
k=O 

optimal control (5.12) can be represented in the following manner : 

m 

u(59 z) = $e([? r)+$ 2 [+‘~,ksin&(T-@lf 
k=1 k 

+ ‘~Zkcos lhk (T - t)lj F, (5) <F, CT)> vk (5) 

Here, 

(5.14) 

8 (5, ~1 = 6 (5) <& @>> v. (5) {ez K. sin Fr/~i:(T - r)I + 

+ ‘Pz,, cos [ fx(T - a} for A>0 (5.15) 
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E (5, z) = Fl(5) (F, (.Q> v, (5) ((T - ~1 YIO + ‘J?pzol for A = 0 (5-W 

The smallest root T of the equation 

~tu!~2=~~~{~~[~YII*s~~I~~(~-~)l+~..rco~[h,(T-r)ll~ 

x F, (5) (F,(Q) v, (5) + = (5, z))adcd~ = i i (Yikyik) = aa (5.17) 
k=iJ ii1 

yields the time-optimal time. The unknown constants yik, yak (k = 0, 1, 2, ---) 
are found from the system of equations presented above, which can be obtained if in 

system (5.1) we substitute the value of U (5, 7) described by formula (5.14). In sum- 

mary we obtain that 

i (Ei, (CikY,i + Di,Y,i)} = r,, (k =O*‘, 2, * * *) (5.19) 
i=o 

Here, 
T 

Ail, = Ati=&; <F2(r))2sin[hk(T -r)]sin[hi(T-_)]dz 
k IO 

Bit = cki = ~~ 
k 

(J’z (r))‘Sin [A, (T - z)] cos [hi (2' - z)] dr 
0 

T 

D ik = D,, = 
s (Fs(~))~COS[~~(T -T)]COS[hi(T -~J)]dr 
0 

E ik = Et* = -$- ’ 
s pa2 (5) vi (5) vk (5) & (I, k = 0, 1, 2,. . .) 

0 

If, however, A = 0, the coefficients A Oh, Bok, COk, Do k (k = 0, 1, 2, . ..) h.sve 

a somewhat different form, namely, 

Aoo = i <F, (r)j2 (T - r)2 dt, 
T 

0 
Do, = ( (F2 W>* dr 

0 

B oo = Coo = s’ (T - 4 <F, (r)>* dz 
0 

Aio= A,,=tT(T 
s - r) (F,(~))‘sin [hi(T -t)] dr 

‘0 

Bio = j (T --)<~,(~))2cos[X,(T -~)Jdz 
0 

Cio=;[ (pa (r)>* sin [hi (2’ - z)] dr 
, ’ 

0 
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D,i = 4, = 5 (F, (z))acos [Ai (2’ - z)] dr (I = 1,2,. . .) 
0 

Methods for solving system (5.1 B), (5.19) (for a fixed value of T) can be found, for 

example, in [lo]. 
Note 5. From formulas (5.14)-(5.19) it follows that the solution of Problem 2 

depends essentially on the form of the function Fi (z). The formulas presented above 

in Sect. 5 simplify considerably, for example, in cases such as: 
1) the control is distributed over the whole wing axis, i.e. 

F, (5) = 1 (0 < = B 4 

2) the control is applied to two parts of the wing axis, symmetric relative to the 

middle, i.e. 

Fi (r) = (;; 
if a<z<b, I-b<x<l-a 

if O<x<a, b<x<L-b, l--cc<x<l 

3) the control is applied to the central part of the wing axis, i.e. 

Fr (z) = { ;; 
if a\(z<l--a 

if O<s<a, l-a<x<l 

4) the form of the function F1 (z) along the whole wing axis is preassigned and 
when the optimal control is sought in the form of a function depending only on t. 
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